The Limit of a Sequence:

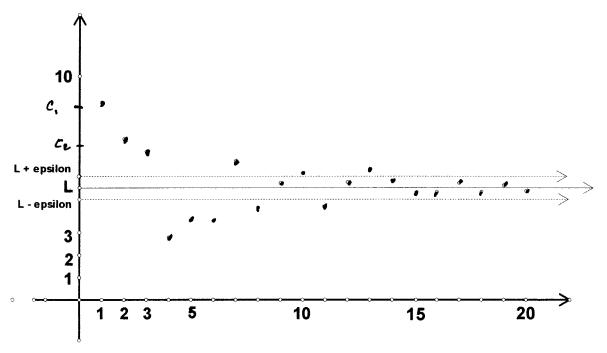
Definitions

TAIL: Given a sequence $c_1, c_2, c_3, \ldots, c_K, c_{K+1}, \ldots$

a \underline{TAIL} of the sequence is formed by a term c_K and all the terms after it.

<u>CONVERGE</u>: A sequence $\{c_n\}$ converges to the Limit L if, for every tiny measure of closeness, ϵ , there is some tail of the sequence that stays that close to the number L. In this case we say "The limit of c_n as n approaches infinity is L" or "As n approaches infinity, c_n approaches L."

We also write: $\lim_{n\to\infty} c_n = L$ or $c_n \to L$ as $n\to\infty$.



<u>DIVERGE</u>: If a sequence fails to converge to a limit, it is said to <u>diverge</u>.

The sequences $\{a_n = 1/n\}$ and $\{b_n = (n+1)/n\}$ both converge to limits:

$$\lim_{n \to \infty} \frac{1}{n} = L = 0; \qquad \lim_{n \to \infty} \frac{n+1}{n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = 1 + 0 = 1$$

The sequences $\{c_n = n^2 + 3n\}$ and $\{d_n = (-1)^n\}$ both diverge.

We say $c_n \to \infty$ as $n \to \infty$ if, for every N > 0, a tail stays greater than N.

We say $c_n \to -\infty$ as $n \to \infty$ if, for every N > 0, a tail stays more negative than (-N).

In both cases, the sequence $\{c_n\}$ diverges.

Theorems:

If $a_n \rightarrow L$ and $b_n \rightarrow M$ then:

1) $a_n b_n \rightarrow L M$; 2) $a_n \pm b_n \rightarrow L \pm M$; 3) $\sqrt{a_n} \rightarrow \sqrt{L}$ if $L \ge 0$.

4)
$$\frac{a_n}{b_n} \rightarrow \frac{L}{M}$$
 if $M \neq 0$; 5) $f(a_n) \rightarrow f(L)$ if f is continuous at $x = L$.

Example: $\cos(a_n) \to \cos(L)$ and $\ln(b_n) \to \ln(M)$ if M > 0.

6) If $\{a_n\}$ is bounded above and below and $b_n \rightarrow \infty$, then $\frac{a_n}{b_n} \rightarrow 0$

Example:
$$\frac{(-1)^n \cdot 10^8}{n\sqrt{n+2}} \rightarrow 0$$

7) If
$$a_n \rightarrow -\infty$$
, then $e^{(a_n)} \rightarrow 0$, but if $a_n \rightarrow 0$, then $e^{(a_n)} \rightarrow e^0 = 1$.

8) If
$$\{a_n > 0\}$$
 and a_n do not converge to 0 and $b_n \rightarrow 0$, then $\frac{a_n}{b_n} \rightarrow \infty$

9) If
$$\{a_n < 0\}$$
 and a_n do not converge to 0 and $b_n \rightarrow 0$, then $\frac{a_n}{b_n} \rightarrow -\infty$

10) If
$$a_n \to \pm \infty$$
 and $b_n \to \pm \infty$, then we must convert $\frac{a_n}{b_n}$ to a different form.

11) If $a_n \rightarrow 0$ and $b_n \rightarrow 0$, then we must convert $\frac{a_n}{b_n}$ to a different form.

12) An alternating sequence converges to L = 0, if it converges at all.

Examples:

$$\frac{\sqrt{n+3}}{\sqrt{4n+5}} = \frac{\sqrt{n}\sqrt{1+(3/n)}}{\sqrt{n}\sqrt{4+(5/n)}} = \frac{\sqrt{1+(3/n)}}{\sqrt{4+(5/n)}} \rightarrow \frac{1}{\sqrt{4}} = \frac{1}{2}$$

$$\frac{3n^2 + 5n}{4 - 2n^2} = \frac{n^2 (3 + (5/n))}{n^2 ((4/n^2) - 2)} = \frac{(3 + (5/n))}{((4/n^2) - 2)} \to \frac{3}{-2} = -\frac{3}{2}$$